

# Evaluation of a Fully Automated Semen Quality Analyzer (LensHooke™ X1) for Home-based Monitoring

Ashok Agarwal<sup>1</sup>, Manesh Kumar Panner Selvam<sup>1</sup>, Cheng-Teng Hsu<sup>2</sup>





## Introduction

Home-based semen quality analyzer (HBSQA) provides private, convenient and rapid evaluation of semen samples. However, there is no information in literature on post-surgical (varicocele repair or removal of ejaculatory duct obstruction) semen quality monitoring (SQM) using HBSQA. Most HBSQA measures only one or a few parameters at a time and thus cannot replace standard laboratory analysis of a semen specimen. LensHooke™ X1 semen quality analyzer, a new generation HBSQA can analyze multiple semen parameters. This study is aimed to evaluate LensHooke™ X1, a fully automated HBSQA for its accuracy, reproducibility, precision and usability as a SQM device.

## **Experimental Design**

#### **Experiment 1:**

Semen Analysis Using LensHooke™ X1



#### **Experiment 2:**

Semen Quality Monitoring Simulation





### Results

- **1 Accuracy:** Both novice and trained professionals showed high degree of accuracy in sperm concentration and total motility (>90%). There were no significant differences between the two groups (Fig 1, Table 1).
- **2 Reproducibility:** High degree of reproducibility (98.6%) for the measurement of latex beads concentration (Fig 2, Table 2).
- **Table 1.** Evaluation of LensHooke™ X1 semen quality analyzer: Semen analysis results between novice and trained professional

| Semen Analysis                           |                   |           |                                |                                        |  |  |  |  |
|------------------------------------------|-------------------|-----------|--------------------------------|----------------------------------------|--|--|--|--|
|                                          |                   | Reference | Novice<br>(N=10, Mean ±<br>SD) | Trained Professional (N=10, Mean ± SD) |  |  |  |  |
| Concentration (10 <sup>6</sup> sperm/mL) | Semen Aliquot 1   | 0         | 0                              | 0                                      |  |  |  |  |
|                                          | Semen Aliquot 2   | 15.4      | 14.3 ± 6.10                    | 14.8 ± 4.22                            |  |  |  |  |
|                                          | Semen Aliquot 3   | 50.8      | 48.1 ± 9.00                    | 51.1 ± 9.95                            |  |  |  |  |
| Accuracy                                 |                   |           | 90%                            | 93%                                    |  |  |  |  |
| paired sample t-test                     |                   |           | p = 0.84                       |                                        |  |  |  |  |
| Total<br>Motility<br>(%)                 | Semen Aliquot 1   | 0         | 0                              | 0                                      |  |  |  |  |
|                                          | Semen Aliquot 2   | 60        | 59.1 ± 5.02                    | 60.6 ± 5.06                            |  |  |  |  |
|                                          | Semen Aliquot 3   | 72        | 72.2 ± 6.75                    | 72.7 ± 4.88                            |  |  |  |  |
|                                          | Accuracy          |           | 90%                            | 90%                                    |  |  |  |  |
|                                          | paired sample t-t | est       | p = 0.94                       |                                        |  |  |  |  |

**Table 2.** At-home semen quality monitoring simulation: Evaluation of latex bead concentration (N=45)

| SQM Simulation           |                                |                                                     |                      |                     |  |  |  |
|--------------------------|--------------------------------|-----------------------------------------------------|----------------------|---------------------|--|--|--|
| Reference Conc. (106/mL) | 95% CI<br>(Ref. ±1.96 x<br>SE) | User Conc. in<br>10 <sup>6</sup> /mL<br>(Mean ± SD) | Reproduc-<br>ibility | User CV %<br>(Mean) |  |  |  |
| 15.2                     | 7.6 – 22.8                     | 15.2 ± 1.48                                         | 98.6%                | 9.7%                |  |  |  |

- **3 Precision:** Average CV% for the measurement of latex bead concentration was 9.7%. (Fig 2, Table 2).
- **4 Usability:** Received excellent positive feedback (96%) on the overall impression of LensHooke™ X1 and satisfaction rate of 98% on the user-experience with an average score of 3.32 out of 4 points.





**Figure 1**. Comparison of semen analysis results between novice (N=10) and trained professional participants (N=10) using LensHooke™ X1.



**Figure 2**. The time course of concentration from 45 users performing at-home SQM simulation test. Blue dots indicates concentration of each test (900 tests in total).

## **Conclusion**

LensHooke<sup>™</sup> X1 accurately measures the sperm concentration and total motility. Users can operate LensHooke<sup>™</sup> X1 and obtain reliable results without hands-on experience or additional training. Furthermore, this user-friendly device has high reproducibility to determine the concentration of latex beads. As a result, LensHooke<sup>™</sup> X1 may be used for long term monitoring of semen quality post reproductive surgery such as varicocelectomy and removal of genital tract obstruction.

